Your resource for web content, online publishing
and the distribution of digital products.
S M T W T F S
 
 
 
 
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
 
 
 
 
 
 
 
 
 
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30
 

How Instruction Fine-Tuning Elevates Mixtral – Instruct Above Competitors

Tags: stock
DATE POSTED:October 18, 2024
Table of Links

Abstract and 1. Introduction

2 Architectural details and 2.1 Sparse Mixture of Experts

3 Results

3.1 Multilingual benchmarks, 3.2 Long range performance, and 3.3 Bias Benchmarks

4 Instruction Fine-tuning

5 Routing analysis

6 Conclusion, Acknowledgements, and References

4 Instruction Fine-tuning

We train Mixtral – Instruct using supervised fine-tuning (SFT) on an instruction dataset followed by Direct Preference Optimization (DPO) [25] on a paired feedback dataset. Mixtral – Instruct reaches a score of 8.30 on MT-Bench [33] (see Table 2), making it the best open-weights model as of December 2023. Independent human evaluation conducted by LMSys is reported in Figure 6 [3] and shows that Mixtral – Instruct outperforms GPT-3.5-Turbo, Gemini Pro, Claude-2.1, and Llama 2 70B chat.

\  LMSys Leaderboard. (Screenshot from Dec 22, 2023) Mixtral 8x7B Instruct v0.1 achieves an Arena Elo rating of 1121 outperforming Claude-2.1 (1117), all versions of GPT-3.5-Turbo (1117 best), Gemini Pro (1111), and Llama-2-70b-chat (1077). Mixtral is currently the best open-weights model by a large margin.

\

:::info This paper is available on arxiv under CC 4.0 license.

:::

[3] https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard

:::info Authors:

(1) Albert Q. Jiang;

(2) Alexandre Sablayrolles;

(3) Antoine Roux;

(4) Arthur Mensch;

(5) Blanche Savary;

(6) Chris Bamford;

(7) Devendra Singh Chaplot;

(8) Diego de las Casas;

(9) Emma Bou Hanna;

(10) Florian Bressand;

(11) Gianna Lengyel;

(12) Guillaume Bour;

(13) Guillaume Lample;

(14) Lélio Renard Lavaud;

(15) Lucile Saulnier;

(16) Marie-Anne Lachaux;

(17) Pierre Stock;

(18) Sandeep Subramanian;

(19) Sophia Yang;

(20) Szymon Antoniak;

(21) Teven Le Scao;

(22) Théophile Gervet;

(23) Thibaut Lavril;

(24) Thomas Wang;

(25) Timothée Lacroix;

(26) William El Sayed.

:::

\

Tags: stock