:::info Authors:
(1) Ben Athiwaratkun, AWS AI Labs;
(2) Sujan Kumar Gonugondla, AWS AI Labs;
(3) Sanjay Krishna Gouda, AWS AI Labs;
(4) Haifeng Qian, AWS AI Labs;
(5) Sanjay Krishna Gouda, AWS AI Labs;
(6) Hantian Ding, AWS AI Labs;
(7) Qing Sun, AWS AI Labs;
(8) Jun Wang, AWS AI Labs;
(9) Jiacheng Guo, AWS AI Labs;
(10 Liangfu Chen, AWS AI Labs;
(11) Parminder Bhatia, GE HealthCare (work done at AWS);
(12) Ramesh Nallapati, Amazon AGI (work done at AWS);
(13) Sudipta Sengupta, AWS AI Labs;
(14) Bing Xiang, Goldman Sachs (work done at AWS).
:::
Table of Links3.1. Notation and 3.2. Language Model Inference
3.3. Multi-Query, Multi-Head and the Generalized Multi-Query Attention
4. Context-Aware Bifurcated Attention and 4.1. Motivation
4.2. Formulation and 4.3. Memory IO Complexity
5.1. Comparing Capabilities of Multi-Head, Multi-Query, and Multi-Group Attention
5.2. Latencies of Capabilities-Equivalent Models
\ A. FAQs
D. Multi-Group Attention Family
E. Context-Aware Bifurcated Attention
F. Applications: Additional Results
G. Compatibility with Speculative Decoding and Fast Decoding techniques
\
5.3. ApplicationsEfficient large-scale sampling is particularly useful for downstream applications that require multiple generations but has latency constraints, e.g., AI code assistants. In this case, bifurcated attention enables generating more candidates by using larger batch size without incurring much additional latency. To verify our point, we empirically evaluate CodeGen-16B-mono (Nijkamp et al., 2022) and StarCoder (15.5B) (Li et al., 2023) on MBPP dataset (Austin et al., 2021), and plot pass rates with respect to latency in Figure 8, where we also indicate the batch size n. We consider two accuracy measurements: (1) pass@n corresponds to the oracle scenario, where we evaluate all the generated samples and check if any of them is correct; (2) pass@top3, where we are only allowed to evaluate three examples no matter how many we generate. In the top-3 case, we deduplicate the n samples, and rank by their mean log probability scores (Chen et al., 2021) to determine three candidates. All experiments use nucleus sampling with p = 0.95 (Holtzman et al., 2020) and temperature 0.8. The results show much sharper improvement in either metrics relative to additional latency. This approach opens up avenues for performance improvement given a fixed budget of latency.
6. ConclusionBifurcated attention provides a complementary approach to the existing inference acceleration methods, with a particular focus on minimizing the memory IO of the incremental decoding, thereby enhancing inference efficiency. Our work helps support demanding inference scenarios due to larger context during incremental decoding, which are emerging from, e.g., more complex applications that requires long context such as complex reasoning, planning, or retrieval augmented generations.
ReferencesW. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang. Unified pre-training for program understanding and generation. arXiv preprint arXiv:2103.06333, 2021.
\ J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai. GQA: training generalized multi-query transformer models from multi-head checkpoints. CoRR, abs/2305.13245, 2023. doi: 10.48550/arXiv.2305.13245. URL https://doi.org/10.48550/arXiv.2305.13245.
\ L. B. Allal, R. Li, D. Kocetkov, C. Mou, C. Akiki, C. M. Ferrandis, N. Muennighoff, M. Mishra, A. Gu, M. Dey, et al. Santacoder: don’t reach for the stars! arXiv preprint arXiv:2301.03988, 2023.
\ Amazon. Amazon code whisperer. https://aws.amazon. com/codewhisperer/, 2022.
\ B. Athiwaratkun, S. K. Gouda, Z. Wang, X. Li, Y. Tian, M. Tan, W. U. Ahmad, S. Wang, Q. Sun, M. Shang, S. K. Gonugondla, H. Ding, V. Kumar, N. Fulton, A. Farahani, S. Jain, R. Giaquinto, H. Qian, M. K. Ramanathan, R. Nallapati, B. Ray, P. Bhatia, S. Sengupta, D. Roth, and B. Xiang. Multi-lingual evaluation of code generation models. CoRR, abs/2210.14868, 2022. doi: 10.48550/arXiv.2210.14868. URL https://doi.org/10. 48550/arXiv.2210.14868.
\ J. Austin, A. Odena, M. I. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. J. Cai, M. Terry, Q. V. Le, and C. Sutton. Program synthesis with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/ 2108.07732.
\ I. Beltagy, M. E. Peters, and A. Cohan. Longformer: The longdocument transformer. arXiv preprint arXiv:2004.05150, 2020.
\ T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. CoRR, abs/2005.14165, 2020. URL https://arxiv.org/abs/2005.14165.
\ A. Bulatov, Y. Kuratov, and M. S. Burtsev. Scaling transformer to 1m tokens and beyond with rmt. arXiv preprint arXiv:2304.11062, 2023.
\ T. Cai, Y. Li, Z. Geng, H. Peng, J. D. Lee, D. Chen, and T. Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads, 2024.
\ C. Chen, S. Borgeaud, G. Irving, J. Lespiau, L. Sifre, and J. Jumper. Accelerating large language model decoding with speculative sampling. CoRR, abs/2302.01318, 2023. doi: 10.48550/arXiv.2302.01318. URL https://doi.org/10. 48550/arXiv.2302.01318.
\ M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.org/abs/ 2107.03374.
\ R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse transformers. URL https://openai.com/blog/sparse-transformers, 2019.
\ J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky. Nvidia a100 tensor core gpu: Performance and innovation. IEEE Micro, 41(2):29–35, 2021.
\ A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. GurAri, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language modeling with pathways. CoRR, abs/2204.02311, 2022. doi: 10.48550/arXiv.2204.02311. URL https://doi.org/10. 48550/arXiv.2204.02311.
\ M. R. Costa-jussà, J. Cross, O. Çelebi, M. Elbayad, K. Heafield, K. Heffernan, E. Kalbassi, J. Lam, D. Licht, J. Maillard, et al. No language left behind: Scaling human-centered machine translation. arXiv preprint arXiv:2207.04672, 2022.
\ T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. Flashattention: Fast and memory-efficient exact attention with io-awareness. In NeurIPS, 2022. URL http://papers. nips.cc/paper_files/paper/2022/hash/ 67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference. html.
\ S. Dathathri, A. Madotto, J. Lan, J. Hung, E. Frank, P. Molino, J. Yosinski, and R. Liu. Plug and play language models: A simple approach to controlled text generation. arXiv preprint arXiv:1912.02164, 2019.
\ T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. Llm.int8(): 8-bit matrix multiplication for transformers at scale. CoRR, abs/2208.07339, 2022. doi: 10.48550/arXiv.2208.07339. URL https://doi.org/10.48550/arXiv.2208.07339.
\ A. Farhad, A. Arkady, B. Magdalena, B. Ondˇrej, C. Rajen, C. Vishrav, M. R. Costa-jussa, E.-B. Cristina, F. Angela, F. Christian, et al. Findings of the 2021 conference on machine translation (wmt21). In Proceedings of the Sixth Conference on Machine Translation, pages 1–88. Association for Computational Linguistics, 2021.
\ E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate post-training quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.
\ D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong, W.-t. Yih, L. Zettlemoyer, and M. Lewis. Incoder: A generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999, 2022.
\ Y. Fu, P. Bailis, I. Stoica, and H. Zhang. Breaking the sequential dependency of llm inference using lookahead decoding, November 2023. URL https://lmsys.org/blog/ 2023-11-21-lookahead-decoding/.
\ S. Gehman, S. Gururangan, M. Sap, Y. Choi, and N. A. Smith. Realtoxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint arXiv:2009.11462, 2020.
\ Google. Bard. https://blog.google/technology/ai/ try-bard/, 2023.
\ K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang. Retrieval augmented language model pre-training. In International conference on machine learning, pages 3929–3938. PMLR, 2020.
\ J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A. Hendricks, J. Welbl, A. Clark, et al. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.
\ A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The curious case of neural text degeneration. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id= rygGQyrFvH.
\ G. Izacard, P. Lewis, M. Lomeli, L. Hosseini, F. Petroni, T. Schick, J. Dwivedi-Yu, A. Joulin, S. Riedel, and E. Grave. Atlas: Fewshot learning with retrieval augmented language models. arXiv preprint arXiv, 2208, 2022.
\ Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting the NVIDIA volta GPU architecture via microbenchmarking. CoRR, abs/1804.06826, 2018. URL http://arxiv.org/ abs/1804.06826.
\ D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen, et al. A study of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322, 2019.
\ J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and D. Amodei. Scaling laws for neural language models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.
\ D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
\ A. Kuzmin, M. Van Baalen, Y. Ren, M. Nagel, J. Peters, and T. Blankevoort. Fp8 quantization: The power of the exponent. arXiv preprint arXiv:2208.09225, 2022.
\ W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. E. Gonzalez, H. Zhang, and I. Stoica. Efficient memory management for large language model serving with pagedattention, 2023.
\ H. Le, Y. Wang, A. D. Gotmare, S. Savarese, and S. C. H. Hoi. Coderl: Mastering code generation through pretrained models and deep reinforcement learning. Advances in Neural Information Processing Systems, 35:21314–21328, 2022.
\ Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative decoding. CoRR, abs/2211.17192, 2022. doi: 10.48550/arXiv.2211.17192. URL https://doi. org/10.48550/arXiv.2211.17192.
\ R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou, M. Marone, C. Akiki, J. Li, J. Chim, et al. Starcoder: may the source be with you! arXiv preprint arXiv:2305.06161, 2023.
\ Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago, et al. Competition-level code generation with alphacode. Science, 378(6624):1092–1097, 2022.
\ Y. Li, F. Wei, C. Zhang, and H. Zhang. Eagle: Speculative sampling requires rethinking feature uncertainty, 2024.
\ Z. Lin and M. Riedl. Plug-and-blend: A framework for controllable story generation with blended control codes. arXiv preprint arXiv:2104.04039, 2021.
\ I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
\ A. Madaan, A. Shypula, U. Alon, M. Hashemi, P. Ranganathan, Y. Yang, G. Neubig, and A. Yazdanbakhsh. Learning performance-improving code edits. arXiv preprint arXiv:2302.07867, 2023.
\ J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, F. Song, M. Chadwick, M. Glaese, S. Young, L. Campbell-Gillingham, G. Irving, et al. Teaching language models to support answers with verified quotes. arXiv preprint arXiv:2203.11147, 2022.
\ X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, R. Y. Y. Wong, Z. Chen, D. Arfeen, R. Abhyankar, and Z. Jia. Specinfer: Accelerating generative LLM serving with speculative inference and token tree verification. CoRR, abs/2305.09781, 2023. doi: 10.48550/ARXIV.2305.09781. URL https://doi.org/ 10.48550/arXiv.2305.09781.
\ Microsoft. Github copilot. https://github.com/ features/copilot.
\ P. Mirowski, K. W. Mathewson, J. Pittman, and R. Evans. Cowriting screenplays and theatre scripts with language models: Evaluation by industry professionals. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–34, 2023.
\ M. Nadeem, A. Bethke, and S. Reddy. Stereoset: Measuring stereotypical bias in pretrained language models. arXiv preprint arXiv:2004.09456, 2020.
\ R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju, W. Saunders, et al. Webgpt: Browser-assisted question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.
\ E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong. Codegen: An open large language model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474, 2022.
\ E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou. Codegen2: Lessons for training llms on programming and natural languages. arXiv preprint arXiv:2305.02309, 2023.
\ NVIDIA. Fastertransformer. https://github.com/ NVIDIA/FasterTransformer.
\ OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774. URL https://doi.org/ 10.48550/arXiv.2303.08774.
\ A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 8024–8035, 2019. URL https: //proceedings.neurips.cc/paper/2019/hash/ bdbca288fee7f92f2bfa9f7012727740-Abstract. html.
\ H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri. Asleep at the keyboard? assessing the security of github copilot’s code contributions. In 2022 IEEE Symposium on Security and Privacy (SP), pages 754–768. IEEE, 2022.
\ R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, A. Levskaya, J. Heek, K. Xiao, S. Agrawal, and J. Dean. Efficiently scaling transformer inference. CoRR, abs/2211.05102, 2022. doi: 10.48550/arXiv.2211.05102. URL https://doi.org/ 10.48550/arXiv.2211.05102.
\ J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 3505–3506, 2020.
\ B. Roziere, M.-A. Lachaux, L. Chanussot, and G. Lample. Unsupervised translation of programming languages. Advances in Neural Information Processing Systems, 33:20601–20611, 2020.
\ T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and T. Scialom. Toolformer: Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.
\ N. Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150, 2019. URL http://arxiv. org/abs/1911.02150.
\ M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053, 2019.
\ M. N. Team. Introducing mpt-7b: A new standard for open-source, commercially usable llms. 2023. URL www.mosaicml. com/blog/mpt-7b.
\ H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample. Llama: Open and efficient foundation language models. CoRR, abs/2302.13971, 2023. doi: 10.48550/arXiv.2302.13971. URL https://doi. org/10.48550/arXiv.2302.13971.
\ C. Tran, S. Bhosale, J. Cross, P. Koehn, S. Edunov, and A. Fan. Facebook ai wmt21 news translation task submission. arXiv preprint arXiv:2108.03265, 2021.
\ A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017. URL https: //proceedings.neurips.cc/paper/2017/hash/ 3f5ee243547dee91fbd053c1c4a845aa-Abstract. html.
\ S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020.
\ X. Wei, S. K. Gonugondla, W. U. Ahmad, S. Wang, B. Ray, H. Qian, X. Li, V. Kumar, Z. Wang, Y. Tian, Q. Sun, B. Athiwaratkun, M. Shang, M. K. Ramanathan, P. Bhatia, and B. Xiang. Greener yet powerful: Taming large code generation models with quantization. CoRR, abs/2303.05378, 2023. doi: 10.48550/arXiv.2303.05378. URL https://doi.org/10. 48550/arXiv.2303.05378.
\ T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, et al. Huggingface’s transformers: State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.
\ G. Xiao, J. Lin, M. Seznec, J. Demouth, and S. Han. Smoothquant: Accurate and efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438, 2022.
\ Z. Yao, R. Y. Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. In NeurIPS, 2022. URL http://papers. nips.cc/paper_files/paper/2022/hash/ adf7fa39d65e2983d724ff7da57f00ac-Abstract-Conference. html.
\ K. Yee, N. Ng, Y. N. Dauphin, and M. Auli. Simple and effective noisy channel modeling for neural machine translation. arXiv preprint arXiv:1908.05731, 2019.
\ A. Yuan, A. Coenen, E. Reif, and D. Ippolito. Wordcraft: story writing with large language models. In 27th International Conference on Intelligent User Interfaces, pages 841–852, 2022.
\ M. Zaheer, G. Guruganesh, K. A. Dubey, J. Ainslie, C. Alberti, S. Ontañón, P. Pham, A. Ravula, Q. Wang, L. Yang, and A. Ahmed. Big bird: Transformers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https: //proceedings.neurips.cc/paper/2020/hash/ c8512d142a2d849725f31a9a7a361ab9-Abstract. html.
\ C. Zhen, Y. Shang, X. Liu, Y. Li, Y. Chen, and D. Zhang. A survey on knowledge-enhanced pre-trained language models. arXiv preprint arXiv:2212.13428, 2022.
\
:::info This paper is available on arxiv under CC BY 4.0 DEED license.
:::
\
All Rights Reserved. Copyright , Central Coast Communications, Inc.