:::info Authors:
(1) Yuwei Guo, The Chinese University of Hong Kong;
(2) Ceyuan Yang, Shanghai Artificial Intelligence Laboratory with Corresponding Author;
(3) Anyi Rao, Stanford University;
(4) Zhengyang Liang, Shanghai Artificial Intelligence Laboratory;
(5) Yaohui Wang, Shanghai Artificial Intelligence Laboratory;
(6) Yu Qiao, Shanghai Artificial Intelligence Laboratory;
(7) Maneesh Agrawala, Stanford University;
(8) Dahua Lin, Shanghai Artificial Intelligence Laboratory;
(9) Bo Dai, The Chinese University of Hong Kong and The Chinese University of Hong Kong.
:::
Table of Links4.1 Alleviate Negative Effects from Training Data with Domain Adapter
4.2 Learn Motion Priors with Motion Module
4.3 Adapt to New Motion Patterns with MotionLora
5 Experiments and 5.1 Qualitative Results
8 Reproducibility Statement, Acknowledgement and References
4.3 ADAPT TO NEW MOTION PATTERNS WITH MOTIONLORAWhile the pre-trained motion module captures general motion priors, a question arises when we need to effectively adapt it to new motion patterns such as camera zooming, panning and rolling, etc., with a small number of reference videos and training iterations. Such efficiency is essential for users who cannot afford expensive pre-training costs but would like to fine-tune the motion module for specific effects. Here comes the last stage of AnimateDiff, also dubbed as MotionLoRA (Fig. 3), an efficient fine-tuning approach for motion personalization. Considering the architecture of the motion module and the limited number of reference videos, we add LoRA layers to the self-attention layers of the motion module in the inflated model described in Sec. 4.2, then train these LoRA layers on the reference videos of new motion patterns.
\ We experiment with several shot types and get the reference videos via rule-based data augmentation. For instance, to get videos with zooming effects, we augment the videos by gradually reducing (zoom-in) or enlarging (zoom-out) the cropping area of video frames along the temporal axis. We demonstrate that our MotionLoRA can achieve promising results even with as few as 20 ∼ 50 reference videos, 2,000 training iterations (around 1 ∼ 2 hours) as well as about 30M storage space, enabling efficient model tuning and sharing among users. Benefited by the low-rank property, MotionLoRA also has the composition capability. Namely, individually trained MotionLoRA models can be combined to achieve composed motion effects at inference time.
\
:::info This paper is available on arxiv under CC BY 4.0 DEED license.
:::
\
All Rights Reserved. Copyright , Central Coast Communications, Inc.